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Recently we reported on the microwave-induced coupling of
carboxylic acids with isonitriles, giving rise to various N-formyl-
amides (cf. 4, Scheme 1).1 We suggested the term two-component
coupling (2CC) to differentiate this work from earlier studies.2 As
we discussed previously, one likely mechanistic interpretation of
the 2CC reaction is that 4 arises from a 1,3-OfN acyl transfer
within 3.3,4 The latter comes about from a protonation-addition
sequence in the joining of 1 and 2. To the best of our knowledge,
no structure corresponding to a formimidate carboxylate mixed
anhydride 3 (hereafter referred to in this paper as a FCMA), had
been documented in a convincing way, let alone fully character-
ized.5-7 Our thoughts and experiences in this area led us to suppose
that a generic FCMA, 3, would be a highly reactive acyl donor.
Accordingly, a recent report5a to the effect that FCMA 7 is produced
at room temperature as a crystalline product from the reaction of
acid 5 and isonitrile 6 in water provoked our curiosity. Moreover,
we noted that the spectroscopic properties of the alleged 7
(particularly its reported IR spectrum)8 do not correspond to what
would be expected from such a structure.9

In our hands, the reaction of 5 and 6 in water did indeed produce,
as reported by the authors,5a a crystalline product, mp 69-71 °C.
Surprisingly at the time, microwave heating of this solid in
chloroform failed to produce any discernible amounts of what would
have been the expected product, 8, given the claimed structure 7.1

Adding to the puzzle, it was found that the crystalline product could
not be retrieved after it had been dissolved in chloroform, even
without thermolysis (i.e., at room temperature). Instead, evaporation
of the solvent leaves a residue which does not have the properties
of its precursor, allegedly 7. The residue from chloroform could
be separated into components 5 and 9 by exploiting their differing
acidic and neutral solubility properties, respectively.

Fortunately, it proved possible to obtain some diffraction-worthy
crystals from the product of the reaction of 5 and 6. Crystallographic
analysis of the sample revealed the structure to be 10, a stable
complex (fascinating in its own right!) between N-formylcyclo-
hexylamine 9 and m-nitrobenzoic acid 5 (see Figure 1).10 Appar-
ently, the fragile molecular association between 5 and 9 unravels
upon dissolution in chloroform. Thus, the claim that the reaction
of 5 and 6 produces FCMA 7 is not correct.

Also noteworthy was a report, in the same paper, describing a
high yielding formation of amides (cf. 11, Scheme 2) from reactions
of various benzoic acids (cf. 5) and isonitriles (cf. 6) conducted in
methanol at room temperature.5a Our previous work,1 admittedly
conducted in chloroform, showed virtually no reaction between
acids and isonitriles at room temperature. Moreover we suspected
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that if a FCMA (cf. 3) intermediate were produced, it would have
suffered conversion to the corresponding methyl ester. Accordingly,
we repeated the reaction under the authors’ conditions, that is,
methanol as the solvent, at room temperature. As before, we had
no difficulty in duplicating the published gross observations but
we were not in agreement on the assignments. However, the
assignments of simple amidic structures to the resultant crystalline
products are not correct. First, several of the alleged amides had
actually been previously reported in the literature.11 In each case
that could be checked, there was a large discrepancy in melting
points between the alleged “amides” reported from the isonitrile-
based coupling reactions and those previously reported. In each
case the melting points of the purported amides reported5a were
much higher than those previously reported for the authentic amides.
Furthermore, in several cases, we prepared authentic amide samples
ourselves by standard (cf. DCC) coupling methods. The NMR
spectra of the authentic amides were very different from those of
the amides claimed as arising from the isonitrile method.5a

In pursuing the matter, it became clear that the product of the
reaction of 5 + 6 in methanol is not the amide 11 but rather the
salt 13, arising from the neutralization of the acid 5 and cyclohexyl
amine 12. Indeed, the same material as that synthesized by the
authors (cf. 13) was generated by simply mixing equivalent amounts
of 5 and 12. It is likely that 12 arises from a well-precedented,
though mechanistically unclear, methanol-mediated conversion of
isonitriles to amines.12 Neutralization of the amine 12 provides the
actual product, salt 13.

Another earlier paper by Gloede et al. on the reaction of
isonitriles and carboxylic acids (Scheme 3) provoked skepticism
on our part.5b,c It was reported that the reaction of p-nitrobenzoic
acid 14 and cyclohexylisonitrile 6, when conducted in methanol
under reflux, gave rise to FCMA 15, mp 174-176 °C. Again,
for obvious reasons,13 we wondered whether such a FCMA could
have persisted in methanol. Accordingly, we repeated the
experiment and obtained, exactly as reported, a crystalline
compound, mp 173-175 °C (in addition to varying quantities
of methyl ester 16). However, it was soon found that the high
melting product is actually 17, the p-nitrobenzoic acid salt of
1,3-dicyclohexylamidine 18.14 This structure was confirmed by
spectroscopic analysis of the product formed from mixing 2 equiv
14 and 1 equiv 18.15 Furthermore, removal of p-nitrobenzoic
acid by basic workup afforded amidine 18 as the product. While
the definition of a specific pathway for formation of 17 from
among several obvious possibilities is not available from our
data, qualitatively, it must involve, in some form, the metha-
nolytic progression of 6 toward cyclohexylamine 12 as discussed
above. The formation of the amidine 18 may well reflect an
addition reaction of cyclohexylamine with 616 or an acid-mediated
condensation between N-cyclohexylformamide 9 (or its equiva-
lent) and cyclohexylamine 12 (or its functional equivalent).17

While this uncertainty remains to be sorted out, it is clear that
the published assertions which claimed the formation and
survival of labile FCMA systems in the presence of putative
acyl acceptors (for instance, methanol or water as solvents) are
not correct.18 In addition to the cases studied above, there may
well be other instances where such claims warrant re-
examination.5e

Motivated by the results described above, we asked whether a
relatively weak nucleophile, such as methanol, could compete with
1,3-OfN acyl transfer in the context of a microwave mediated
2CC experiment (Scheme 4). Under these near stoichiometric
conditions, substantial methanol-induced conversion of isonitrile
to amine12 would hopefully be attenuated. We started by studying
the reaction of ca. 1:1:1 equiv of acid 19, isonitrile 6, and methanol
under the usual microwave-mediated thermolysis. In the event, there
was obtained ca. 38% yield of methyl ester 20, the expected two-
component coupling product 21 (30%), and traces of the amide 22
(4%). Separately, it was demonstrated that amide 22 does not arise
from methanolytic deformylation of 21 under closely simulated
methanol conditions. It is likely that 22 comes about from small
amounts of cyclohexylamine (12) or its equivalent arising from 6.
Thus, acylation of 12 by FCMA 23 could lead to 22.

Finally, it was of interest to study the possibility of a 2CC
reaction between phthaloyl glycine 24 and serine isonitrile benzyl
ester 25 as a model for interdiction by an intramolecular hydroxyl
group (Scheme 5). Remarkably, even at room temperature, the 2CC
reaction does occur, giving rise to 26, although in only ca. 25%
yield. In an important control experiment, it was shown that
hydroxyl protected serine isonitrile derivative 2719 seemingly does
not react with 24 at all at room temperature.
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Scheme 6
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Our data do not allow us to distinguish between several obvious
variations of the general scheme suggested in Scheme 6. Globally,
the teaching seems to be that an otherwise unfavorable formation
of a FCMA can be driven to product 26 through neighboring
hydroxyl participation to enable the 1,3-OfN acyl transfer at room
temperature.18

The formation of 26 points to an eventual approach to serine
ligation.20 In the succeeding paper, we probe subtle but important
mechanistic issues as well as new directions for the 2CC reac-
tion.
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